By KennyFelder

Show description

Read Online or Download Advanced Algebra II: Activities and Homework PDF

Best algebra books

New PDF release: Introduction to Abstract Algebra: Solutions Manual (4th

Post yr word: First released January fifteenth 1998
-------------------------

The Fourth version of creation to summary Algebra keeps to supply an available method of the fundamental constructions of summary algebra: teams, earrings, and fields. The book's designated presentation is helping readers enhance to summary conception by means of providing concrete examples of induction, quantity conception, integers modulo n, and variations sooner than the summary constructions are outlined. Readers can instantly start to practice computations utilizing summary techniques which are built in better element later within the text.

The Fourth variation positive factors vital innovations in addition to really good themes, including:
• The remedy of nilpotent teams, together with the Frattini and becoming subgroups
• Symmetric polynomials
• The evidence of the elemental theorem of algebra utilizing symmetric polynomials
• The facts of Wedderburn's theorem on finite department rings
• The facts of the Wedderburn-Artin theorem

Throughout the ebook, labored examples and real-world difficulties illustrate suggestions and their purposes, facilitating a whole realizing for readers despite their historical past in arithmetic. A wealth of computational and theoretical workouts, starting from simple to complicated, permits readers to check their comprehension of the cloth. moreover, distinct ancient notes and biographies of mathematicians offer context for and remove darkness from the dialogue of key subject matters. A options guide can also be to be had for readers who would favor entry to partial options to the book's exercises.

Introduction to summary Algebra, Fourth variation is a wonderful e-book for classes at the subject on the upper-undergraduate and beginning-graduate degrees. The booklet additionally serves as a precious reference and self-study instrument for practitioners within the fields of engineering, computing device technology, and utilized mathematics.

Richard Bird, Oege de Moor's Algebra of programming PDF

Describes an algebraic method of programming that allows the calculation of courses. Introduces the basics of algebra for programming. provides paradigms and methods of software building that shape the middle of set of rules layout. Discusses features and different types; functions; family and allegories; datatypes; recursive courses, optimization matters, thinning algorithms, dynamic programming and grasping algorithms.

Algebra of Communicating Processes: Proceedings of ACP94, by J. A. Bergstra, J. W. Klop (auth.), A. Ponse PhD, C. Verhoef PDF

ACP, the Algebra of speaking techniques, is an algebraic method of the research of concurrent methods, initiated by way of Jan Bergstra and Jan Will em Klop within the early eighties. those lawsuits contain the contributions to ACP94, the 1st workshop dedicated to ACP. The paintings­ store used to be held at Utrecht collage, 16-17 may possibly 1994.

Get McGraw-Hill's 500 statistics questions : ace your college PDF

500 how you can in attaining Your top Grades we need you to be triumphant in your information midterm and ultimate checks. that is why we have now chosen those 500 inquiries to assist you examine extra successfully, use your education time properly, and get your top grades. those questions and solutions are just like those you’ll locate on a customary collage examination, so that you will be aware of what to anticipate on attempt day.

Additional info for Advanced Algebra II: Activities and Homework

Sample text

T ✐s♥✬t ❛❧r❡❛❞② ✐♥ t❤❛t ❢♦r♠✮ ■❞❡♥t✐❢② t❤❡ s❧♦♣❡ ■❞❡♥t✐❢② t❤❡ y ✲✐♥t❡r❝❡♣t✱ ❛♥❞ ❣r❛♣❤ ✐t ❯s❡ t❤❡ s❧♦♣❡ t♦ ✜♥❞ ♦♥❡ ♣♦✐♥t ♦t❤❡r t❤❛♥ t❤❡ ●r❛♣❤ t❤❡ ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✺ y = 3x − 2 ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ y ✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✺✻ 2y − x = 4 ❊q✉❛t✐♦♥ ✐♥ y = ♠① + b y ✲✐♥t❡r❝❡♣t ♦♥ t❤❡ ❧✐♥❡ ✷✾ ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ n✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ✶✸ ✶✳✶✸ ❍♦♠❡✇♦r❦✿ ●r❛♣❤✐♥❣ ▲✐♥❡s ❊①❡r❝✐s❡ ✶✳✺✼ 2y + 7x + 3 = 0 ❛✳ ❜✳ ❝✳ ❞✳ ❡✳ ✐s t❤❡ ❡q✉❛t✐♦♥ ❢♦r ❛ ❧✐♥❡✳ P✉t t❤✐s ❡q✉❛t✐♦♥ ✐♥t♦ t❤❡ ✏s❧♦♣❡✲✐♥t❡r❝❡♣t✑ ❢♦r♠ y = ♠① + b s❧♦♣❡ ❂ ❴❴❴❴❴❴❴❴❴❴❴ ②✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ①✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ●r❛♣❤ ✐t✳ ❊①❡r❝✐s❡ ✶✳✺✽ ❚❤❡ ♣♦✐♥ts (5, 2) ❛♥❞ (7, 8) ❧✐❡ ♦♥ ❛ ❧✐♥❡✳ ❛✳ ❋✐♥❞ t❤❡ s❧♦♣❡ ♦❢ t❤✐s ❧✐♥❡ ❜✳ ❋✐♥❞ ❛♥♦t❤❡r ♣♦✐♥t ♦♥ t❤✐s ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✾ ❲❤❡♥ ②♦✉✬r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢✱ ②♦✉ ♦❢t❡♥ t❛❧❦ ❛❜♦✉t t❤❡ ✏♣✐t❝❤✑ ♦❢ t❤❡ r♦♦❢✖✇❤✐❝❤ ✐s ❛ ❢❛♥❝② ✇♦r❞ t❤❛t ♠❡❛♥s ✐ts s❧♦♣❡✳ ❨♦✉ ❛r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢ s❤❛♣❡❞ ❧✐❦❡ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ r♦♦❢ ✐s ♣❡r❢❡❝t❧② s②♠♠❡tr✐❝❛❧✳ ❚❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ✐s ✳ ■♥ t❤❡ ❞r❛✇✐♥❣ ❜❡❧♦✇✱ t❤❡ r♦♦❢ ✐s t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s✖t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡ ✐s t❤❡ ❞♦tt❡❞ ❧✐♥❡ ✻✵✬ ❧♦♥❣✳ ❋✐❣✉r❡ ✶✳✷✸ ❛✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ r♦♦❢ ❄ ❜✳ ❍♦✇ ❤✐❣❤ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡✱ str❛✐❣❤t ✉♣ t♦ t❤❡ ♣♦✐♥t ❛t t❤❡ t♦♣ ♦❢ t❤❡ r♦♦❢ ❄ ❝✳ ❍♦✇ ❧♦♥❣ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❝♦♠❜✐♥❡❞ ❧❡♥❣t❤ ♦❢ t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s ✐♥ t❤❡ ❞r❛✇✐♥❣ ❛❜♦✈❡❄ ❊①❡r❝✐s❡ ✶✳✻✵ y = 3x✱ ❡①♣❧❛✐♥ ✇❤② ✸ ✐s t❤❡ s❧♦♣❡✳ ✭❉♦♥✬t ❥✉st s❛② ✏❜❡❝❛✉s❡ ✐t✬s t❤❡ m + b✳✑ ❊①♣❧❛✐♥ ✇❤② ∆y ∆x ✇✐❧❧ ❜❡ ✸ ❢♦r ❛♥② t✇♦ ♣♦✐♥ts ♦♥ t❤✐s ❧✐♥❡✱ ❥✉st ❧✐❦❡ ✇❡ ❡①♣❧❛✐♥❡❞ ✇❤② b ✐s t❤❡ ②✲✐♥t❡r❝❡♣t✳✮ ■♥ t❤❡ ❡q✉❛t✐♦♥ y= ♠① ❝❧❛ss ✶✸ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✶✽✴✶✳✷✴❃✳ ✐♥ ✐♥ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✵ ❊①❡r❝✐s❡ ✶✳✻✶ ❍♦✇ ❞♦ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ ❛ ✈❡r② t❛❧❧ ♠♦✉♥t❛✐♥❄ ❨♦✉ ❝❛♥✬t ❥✉st s✐♥❦ ❛ r✉❧❡r ❞♦✇♥ ❢r♦♠ t❤❡ t♦♣ t♦ t❤❡ ❜♦tt♦♠ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✦ ❙♦ ❤❡r❡✬s ♦♥❡ ✇❛② ②♦✉ ❝♦✉❧❞ ❞♦ ✐t✳ ❨♦✉ st❛♥❞ ❜❡❤✐♥❞ ❛ tr❡❡✱ ❛♥❞ ②♦✉ ♠♦✈❡ ❜❛❝❦ ✉♥t✐❧ ②♦✉ ❝❛♥ ❧♦♦❦ str❛✐❣❤t ♦✈❡r t❤❡ t♦♣ ♦❢ t❤❡ tr❡❡✱ t♦ t❤❡ t♦♣ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✳ ❚❤❡♥ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ tr❡❡✱ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ ♠♦✉♥t❛✐♥✱ ❛♥❞ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ tr❡❡✳ ❙♦ ②♦✉ ♠✐❣❤t ❣❡t r❡s✉❧ts ❧✐❦❡ t❤✐s✳ ❋✐❣✉r❡ ✶✳✷✹ ❍♦✇ ❤✐❣❤ ✐s t❤❡ ♠♦✉♥t❛✐♥❄ ❊①❡r❝✐s❡ ✶✳✻✷ ❚❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡ ✭❛ ✏r❡❧❛t✐♦♥✱✑ r❡♠❡♠❜❡r t❤♦s❡❄✮ s❤♦✇s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❙❝r♦♦❣❡ ▼❝❉✉❝❦ ❤❛s ❜❡❡♥ ✇♦rt❤ ❡✈❡r② ②❡❛r s✐♥❝❡ ✶✾✾✾✳ ❨❡❛r ✶✾✾✾ ✷✵✵✵ ✷✵✵✶ ✷✵✵✷ ✷✵✵✸ ✷✵✵✹ ◆❡t ❲♦rt❤ ✩✸ ❚r✐❧❧✐♦♥ ✩✹✳✺ ❚r✐❧❧✐♦♥ ✩✻ ❚r✐❧❧✐♦♥ ✩✼✳✺ ❚r✐❧❧✐♦♥ ✩✾ ❚r✐❧❧✐♦♥ ✩✶✵✳✺ ❚r✐❧❧✐♦♥ ❚❛❜❧❡ ✶✳✽ ❛✳ ❜✳ ❝✳ ❞✳ ❍♦✇ ♠✉❝❤ ✐s ❛ tr✐❧❧✐♦♥✱ ❛♥②✇❛②❄ ●r❛♣❤ t❤✐s r❡❧❛t✐♦♥✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❣r❛♣❤❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❝❛♥ ▼r✳ ▼❝❉✉❝❦ ❡❛r♥ ✐♥ ✷✵ ②❡❛rs ❛t t❤✐s r❛t❡❄ ❊①❡r❝✐s❡ ✶✳✻✸ ▼❛❦❡ ✉♣ ❛♥❞ s♦❧✈❡ ②♦✉r ♦✇♥ ✇♦r❞ ♣r♦❜❧❡♠ ✉s✐♥❣ s❧♦♣❡✳ ✸✶ ✶✳✶✹ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ✶✹ ❊①❡r❝✐s❡ ✶✳✻✹ ❨♦✉ ❛r❡ t❤❡ ❢♦r❡♠❛♥ ❛t t❤❡ ❙❡s❛♠❡ ❙tr❡❡t ◆✉♠❜❡r ❋❛❝t♦r②✳ ❆ ❤✉❣❡ ❝♦♥✈❡②♦r ❜❡❧t r♦❧❧s ❛❧♦♥❣✱ ❝♦✈❡r❡❞ ✇✐t❤ ❜✐❣ ♣❧❛st✐❝ ♥✉♠❜❡rs ❢♦r ♦✉r ❝✉st♦♠❡rs✳ ❨♦✉r t✇♦ ❜❡st ❡♠♣❧♦②❡❡s ❛r❡ ❑❛t✐❡ ❛♥❞ ◆✐❝♦❧❛s✳ ❇♦t❤ ♦❢ t❤❡♠ st❛♥❞ ❛t t❤❡✐r st❛t✐♦♥s ❜② t❤❡ ❝♦♥✈❡②♦r ❜❡❧t✳ ◆✐❝♦❧❛s✬s ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉r st❛t✐♦♥✱ ❛❞❞ ✷ ❛♥❞ t❤❡♥ ♠✉❧t✐♣❧② ❜② ✺✱ ❛♥❞ s❡♥❞ ♦✉t t❤❡ r❡s✉❧t✐♥❣ ♥✉♠❜❡r✳ ❑❛t✐❡ ✐s s✉❜tr❛❝t ✶✵✱ ❛♥❞ s❡♥❞ t❤❡ r❡s✉❧t ♥❡①t ♦♥ t❤❡ ❧✐♥❡✳ ❍❡r ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉✱ ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❙❡s❛♠❡ ❙tr❡❡t✳ ❛✳ ❋✐❧❧ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡✳ ❚❤✐s ♥✉♠❜❡r ❝♦♠❡s ❞♦✇♥ t❤❡ ❧✐♥❡ ✲✺ ✲✸ ✲✶ ✷ ✹ ✻ ✶✵ x 2x ◆✐❝♦❧❛s ❝♦♠❡s ✉♣ ✇✐t❤ t❤✐s ♥✉♠✲ ❜❡r✱ ❛♥❞ s❡♥❞s ✐t ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❑❛t✐❡ ❑❛t✐❡ t❤❡♥ s♣✐ts ♦✉t t❤✐s ♥✉♠❜❡r ❚❛❜❧❡ ✶✳✾ ❜✳ ■♥ ❛ ♠❛ss✐✈❡ ❞♦✇♥s✐③✐♥❣ ❡✛♦rt✱ ②♦✉ ❛r❡ ❣♦✐♥❣ t♦ ✜r❡ ◆✐❝♦❧❛s✳ ❑❛t✐❡ ✐s ❣♦✐♥❣ t♦ t❛❦❡ ♦✈❡r ❜♦t❤ ❢✉♥❝t✐♦♥s ✭◆✐❝♦❧❛s✬s ❛♥❞ ❤❡r ♦✇♥✮✳ ❙♦ ②♦✉ ✇❛♥t t♦ ❣✐✈❡ ❑❛t✐❡ ❛ ♥✉♠❜❡r✱ ❛♥❞ s❤❡ ✜rst ❞♦❡s ◆✐❝♦❧❛s✬s ❢✉♥❝t✐♦♥✱ ❛♥❞ t❤❡♥ ❤❡r ♦✇♥✳ ❇✉t ♥♦✇ ❑❛t✐❡ ✐s ♦✈❡r✇♦r❦❡❞✱ s♦ s❤❡ ❝♦♠❡s ✉♣ ✇✐t❤ ❛ s❤♦rt❝✉t✿ ♦♥❡ ❢✉♥❝t✐♦♥ s❤❡ ❝❛♥ ❞♦✱ t❤❛t ❝♦✈❡rs ❜♦t❤ ◆✐❝♦❧❛s✬s ❥♦❜ ❛♥❞ ❤❡r ♦✇♥✳ ❲❤❛t ❞♦❡s ❑❛t✐❡ ❞♦ t♦ ❡❛❝❤ ♥✉♠❜❡r ②♦✉ ❣✐✈❡ ❤❡r❄ ✭❆♥s✇❡r ✐♥ ✇♦r❞s✳✮ ❊①❡r❝✐s❡ ✶✳✻✺ ❚❛②❧♦r ✐s ❞r✐✈✐♥❣ ❛ ♠♦t♦r❝②❝❧❡ ❛❝r♦ss t❤❡ ❝♦✉♥tr②✳ ❊❛❝❤ ❞❛② ❤❡ ❝♦✈❡rs ✺✵✵ ♠✐❧❡s✳ ❆ ♣♦❧✐❝❡♠❛♥ st❛rt❡❞ t❤❡ s❛♠❡ ♣❧❛❝❡ ❚❛②❧♦r ❞✐❞✱ ✇❛✐t❡❞ ❛ ✇❤✐❧❡✱ ❛♥❞ t❤❡♥ t♦♦❦ ♦✛✱ ❤♦♣✐♥❣ t♦ ❝❛t❝❤ s♦♠❡ ✐❧❧❡❣❛❧ ❛❝t✐✈✐t②✳ ❚❤❡ ♣♦❧✐❝❡♠❛♥ st♦♣s ❡❛❝❤ ❞❛② ❡①❛❝t❧② ✜✈❡ ♠✐❧❡s ❜❡❤✐♥❞ ❚❛②❧♦r✳ ▲❡t d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡② ❤❛✈❡ ❜❡❡♥ ❞r✐✈✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ d = 1✳✮ ▲❡t T ❜❡ p ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s ❞r✐✈❡♥✳ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s ❞r✐✈❡♥✳ ▲❡t ❛✳ ❆❢t❡r t❤r❡❡ ❞❛②s✱ ❤♦✇ ❢❛r ❤❛s ❚❛②❧♦r ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❍♦✇ ❢❛r ❤❛s t❤❡ ♣♦❧✐❝❡♠❛♥ ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ T (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ p (T ) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡ t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ❞✐st❛♥❝❡ t❤❛t ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ p (T (d)) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡✲ ♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❊①❡r❝✐s❡ ✶✳✻✻ ❘❛s❤♠✐ ✐s ❛ ❤♦♥♦r st✉❞❡♥t ❜② ❞❛②❀ ❜✉t ❜② ♥✐❣❤t✱ s❤❡ ✇♦r❦s ❛s ❛ ❤✐t ♠❛♥ ❢♦r t❤❡ ♠♦❜✳ ❊❛❝❤ ♠♦♥t❤ s❤❡ ❣❡ts ♣❛✐❞ ✩✶✵✵✵ ❜❛s❡✱ ♣❧✉s ❛♥ ❡①tr❛ ✩✶✵✵ ❢♦r ❡❛❝❤ ♣❡rs♦♥ s❤❡ ❦✐❧❧s✳ ❖❢ ❝♦✉rs❡✱ s❤❡ ❣❡ts ♣❛✐❞ ✐♥ ❝❛s❤✖❛❧❧ ✩✷✵ ❜✐❧❧s✳ ▲❡t k ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ ❘❛s❤♠✐ ❦✐❧❧s ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✳ ▲❡t ♠ ❜❡ t❤❡ ❛♠♦✉♥t ♦❢ ♠♦♥❡② s❤❡ ✐s ♣❛✐❞ t❤❛t ♠♦♥t❤✱ ✐♥ ❞♦❧❧❛rs✳ ▲❡t ✶✹ ❚❤✐s b ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✩✷✵ ❜✐❧❧s s❤❡ ❣❡ts✳ ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✾✴✶✳✶✴❃✳ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✷ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ m (k) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❘❛s❤♠✐ ♠❛❦❡s✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ b (m) t❤❛t t❡❧❧s ❤♦✇ ♠❛♥② ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞♦❧❧❛rs s❤❡ ♠❛❦❡s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ b (m (k))❜ t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❞✳ ■❢ ❘❛s❤♠✐ ❦✐❧❧s ✺ ♠❡♥ ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ✩✷✵ ❜✐❧❧s ❞♦❡s s❤❡ ❡❛r♥❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❡✳ ■❢ ❘❛s❤♠✐ ❡❛r♥s ✶✵✵ ✩✷✵ ❜✐❧❧s ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ♠❡♥ ❞✐❞ s❤❡ ❦✐❧❧❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✻✼ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ❡①❡r❝✐s❡s ★✷ ❛♥❞ ★✸✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❚❤✐s ✐s ❥✉st ❧✐❦❡ t❤❡ ♣r♦❜❧❡♠s ✇❡ ❞✐❞ ❧❛st ✇❡❡❦✱ ❡①❝❡♣t t❤❛t ②♦✉ ❤❛✈❡ t♦ ✉s❡ t❤r❡❡ ✈❛r✐❛❜❧❡s✱ r❡❧❛t❡❞ ❜② ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✶✳✻✽ f (x) = √ x+2 ✳ g (x) = x2 + x ✳ ❛✳ f (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ g (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ f (g (x)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ f (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ g (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❢✳ g (g (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❣✳ f (g (3)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✻✾ h (x) = x − 5✳ h (i (x)) = x✳ ❈❛♥ ②♦✉ ✜♥❞ ✇❤❛t ❢✉♥❝t✐♦♥ i (x) ✐s✱ t♦ ♠❛❦❡ t❤✐s ❤❛♣♣❡♥❄ ✶✺ ✶✳✶✺ ❍♦♠❡✇♦r❦✿ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ❊①❡r❝✐s❡ ✶✳✼✵ ❆♥ ✐♥❝❤✇♦r♠ ✭❡①❛❝t❧② ♦♥❡ ✐♥❝❤ ❧♦♥❣✱ ♦❢ ❝♦✉rs❡✮ ✐s ❝r❛✇❧✐♥❣ ✉♣ ❛ ②❛r❞st✐❝❦ ✭❣✉❡ss ❤♦✇ ❧♦♥❣ t❤❛t ✐s❄✮✳ ❆❢t❡r t❤❡ ✜rst ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✭❧❡t✬s ❥✉st ❛ss✉♠❡ t❤❛t✬s ❛t t❤❡ ❢r♦♥t✮ ✐s ❛t t❤❡ ✸✧ ♠❛r❦✳ ❆❢t❡r t❤❡ s❡❝♦♥❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✻✧ ♠❛r❦✳ ❆❢t❡r t❤❡ t❤✐r❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✾✧ ♠❛r❦✳ ▲❡t h d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ ❝r❛✇❧✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s ❣♦♥❡✳ ▲❡t t d = 1✳✮ ▲❡t ❜❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ✇♦r♠✬s t❛✐❧✳ ❛✳ ❆❢t❡r ✶✵ ❞❛②s✱ ✇❤❡r❡ ✐s t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ■ts t❛✐❧❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ h (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t (h) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ❤❡❛❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ t (h (d)) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ✶✺ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✼✴✶✳✶✴❃✳ ✸✸ ❊①❡r❝✐s❡ ✶✳✼✶ ➣ ❚❤❡ ♣r✐❝❡ ♦❢ ❣❛s st❛rt❡❞ ♦✉t ❛t ✶✵✵ ✴❣❛❧❧♦♥ ♦♥ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤✳ ❊✈❡r② ❞❛② s✐♥❝❡ t❤❡♥✱ ✐t ❤❛s ➣ ❣♦♥❡ ✉♣ ✷ ✴❣❛❧❧♦♥✳ ▼② ❝❛r t❛❦❡s ✶✵ ❣❛❧❧♦♥s ♦❢ ❣❛s✳ ✭❆s ②♦✉ ♠✐❣❤t ❤❛✈❡ ❣✉❡ss❡❞✱ t❤❡s❡ ♥✉♠❜❡rs ❛r❡ ❛❧❧ ✜❝t✐♦♥❛❧✳✮ ▲❡t d ❡q✉❛❧ t❤❡ ❞❛t❡ ✭s♦ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤ ✐s ✶✱ ❛♥❞ s♦ ♦♥✮✳ ▲❡t ♦❢ ❣❛s✱ ✐♥ ❝❡♥ts✳ ▲❡t c g ❡q✉❛❧ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ❡q✉❛❧ t❤❡ t♦t❛❧ ♣r✐❝❡ r❡q✉✐r❡❞ t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ✐♥ ❝❡♥ts✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ g (d) t❤❛t ❣✐✈❡s t❤❡ ♣r✐❝❡ ♦❢ ❣❛s ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ c (g) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ✐t t❛❦❡s t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ♦❢ ❣❛s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ c (g (d)) t❤❛t ❣✐✈❡s t❤❡ ❝♦st ♦❢ ✜❧❧✐♥❣ ✉♣ ♠② ❝❛r ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❞✳ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦❡s ✐t t❛❦❡ t♦ ✜❧❧ ✉♣ ♠② ❝❛r ♦♥ t❤❡ ✶✶t❤ ♦❢ t❤❡ ♠♦♥t❤❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ➣ ❡✳ ❖♥ ✇❤❛t ❞❛② ❞♦❡s ✐t ❝♦st ✶✱✵✹✵ ✭♦t❤❡r✇✐s❡ ❦♥♦✇♥ ❛s ✩✶✵✳✹✵✮ t♦ ✜❧❧ ✉♣ ♠② ❝❛r❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✼✷ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ♥✉♠❜❡rs ✶ ❛♥❞ ✷✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ✭❝♦♠♣♦s✐t❡✮ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❊①❡r❝✐s❡ ✶✳✼✸ f (x) = x x2 +3x+4 ✳ ❋✐♥❞ f (g (x)) ✐❢.

T ✐s♥✬t ❛❧r❡❛❞② ✐♥ t❤❛t ❢♦r♠✮ ■❞❡♥t✐❢② t❤❡ s❧♦♣❡ ■❞❡♥t✐❢② t❤❡ y ✲✐♥t❡r❝❡♣t✱ ❛♥❞ ❣r❛♣❤ ✐t ❯s❡ t❤❡ s❧♦♣❡ t♦ ✜♥❞ ♦♥❡ ♣♦✐♥t ♦t❤❡r t❤❛♥ t❤❡ ●r❛♣❤ t❤❡ ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✺ y = 3x − 2 ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ y ✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✺✻ 2y − x = 4 ❊q✉❛t✐♦♥ ✐♥ y = ♠① + b y ✲✐♥t❡r❝❡♣t ♦♥ t❤❡ ❧✐♥❡ ✷✾ ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ n✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ✶✸ ✶✳✶✸ ❍♦♠❡✇♦r❦✿ ●r❛♣❤✐♥❣ ▲✐♥❡s ❊①❡r❝✐s❡ ✶✳✺✼ 2y + 7x + 3 = 0 ❛✳ ❜✳ ❝✳ ❞✳ ❡✳ ✐s t❤❡ ❡q✉❛t✐♦♥ ❢♦r ❛ ❧✐♥❡✳ P✉t t❤✐s ❡q✉❛t✐♦♥ ✐♥t♦ t❤❡ ✏s❧♦♣❡✲✐♥t❡r❝❡♣t✑ ❢♦r♠ y = ♠① + b s❧♦♣❡ ❂ ❴❴❴❴❴❴❴❴❴❴❴ ②✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ①✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ●r❛♣❤ ✐t✳ ❊①❡r❝✐s❡ ✶✳✺✽ ❚❤❡ ♣♦✐♥ts (5, 2) ❛♥❞ (7, 8) ❧✐❡ ♦♥ ❛ ❧✐♥❡✳ ❛✳ ❋✐♥❞ t❤❡ s❧♦♣❡ ♦❢ t❤✐s ❧✐♥❡ ❜✳ ❋✐♥❞ ❛♥♦t❤❡r ♣♦✐♥t ♦♥ t❤✐s ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✾ ❲❤❡♥ ②♦✉✬r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢✱ ②♦✉ ♦❢t❡♥ t❛❧❦ ❛❜♦✉t t❤❡ ✏♣✐t❝❤✑ ♦❢ t❤❡ r♦♦❢✖✇❤✐❝❤ ✐s ❛ ❢❛♥❝② ✇♦r❞ t❤❛t ♠❡❛♥s ✐ts s❧♦♣❡✳ ❨♦✉ ❛r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢ s❤❛♣❡❞ ❧✐❦❡ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ r♦♦❢ ✐s ♣❡r❢❡❝t❧② s②♠♠❡tr✐❝❛❧✳ ❚❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ✐s ✳ ■♥ t❤❡ ❞r❛✇✐♥❣ ❜❡❧♦✇✱ t❤❡ r♦♦❢ ✐s t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s✖t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡ ✐s t❤❡ ❞♦tt❡❞ ❧✐♥❡ ✻✵✬ ❧♦♥❣✳ ❋✐❣✉r❡ ✶✳✷✸ ❛✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ r♦♦❢ ❄ ❜✳ ❍♦✇ ❤✐❣❤ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡✱ str❛✐❣❤t ✉♣ t♦ t❤❡ ♣♦✐♥t ❛t t❤❡ t♦♣ ♦❢ t❤❡ r♦♦❢ ❄ ❝✳ ❍♦✇ ❧♦♥❣ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❝♦♠❜✐♥❡❞ ❧❡♥❣t❤ ♦❢ t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s ✐♥ t❤❡ ❞r❛✇✐♥❣ ❛❜♦✈❡❄ ❊①❡r❝✐s❡ ✶✳✻✵ y = 3x✱ ❡①♣❧❛✐♥ ✇❤② ✸ ✐s t❤❡ s❧♦♣❡✳ ✭❉♦♥✬t ❥✉st s❛② ✏❜❡❝❛✉s❡ ✐t✬s t❤❡ m + b✳✑ ❊①♣❧❛✐♥ ✇❤② ∆y ∆x ✇✐❧❧ ❜❡ ✸ ❢♦r ❛♥② t✇♦ ♣♦✐♥ts ♦♥ t❤✐s ❧✐♥❡✱ ❥✉st ❧✐❦❡ ✇❡ ❡①♣❧❛✐♥❡❞ ✇❤② b ✐s t❤❡ ②✲✐♥t❡r❝❡♣t✳✮ ■♥ t❤❡ ❡q✉❛t✐♦♥ y= ♠① ❝❧❛ss ✶✸ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✶✽✴✶✳✷✴❃✳ ✐♥ ✐♥ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✵ ❊①❡r❝✐s❡ ✶✳✻✶ ❍♦✇ ❞♦ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ ❛ ✈❡r② t❛❧❧ ♠♦✉♥t❛✐♥❄ ❨♦✉ ❝❛♥✬t ❥✉st s✐♥❦ ❛ r✉❧❡r ❞♦✇♥ ❢r♦♠ t❤❡ t♦♣ t♦ t❤❡ ❜♦tt♦♠ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✦ ❙♦ ❤❡r❡✬s ♦♥❡ ✇❛② ②♦✉ ❝♦✉❧❞ ❞♦ ✐t✳ ❨♦✉ st❛♥❞ ❜❡❤✐♥❞ ❛ tr❡❡✱ ❛♥❞ ②♦✉ ♠♦✈❡ ❜❛❝❦ ✉♥t✐❧ ②♦✉ ❝❛♥ ❧♦♦❦ str❛✐❣❤t ♦✈❡r t❤❡ t♦♣ ♦❢ t❤❡ tr❡❡✱ t♦ t❤❡ t♦♣ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✳ ❚❤❡♥ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ tr❡❡✱ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ ♠♦✉♥t❛✐♥✱ ❛♥❞ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ tr❡❡✳ ❙♦ ②♦✉ ♠✐❣❤t ❣❡t r❡s✉❧ts ❧✐❦❡ t❤✐s✳ ❋✐❣✉r❡ ✶✳✷✹ ❍♦✇ ❤✐❣❤ ✐s t❤❡ ♠♦✉♥t❛✐♥❄ ❊①❡r❝✐s❡ ✶✳✻✷ ❚❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡ ✭❛ ✏r❡❧❛t✐♦♥✱✑ r❡♠❡♠❜❡r t❤♦s❡❄✮ s❤♦✇s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❙❝r♦♦❣❡ ▼❝❉✉❝❦ ❤❛s ❜❡❡♥ ✇♦rt❤ ❡✈❡r② ②❡❛r s✐♥❝❡ ✶✾✾✾✳ ❨❡❛r ✶✾✾✾ ✷✵✵✵ ✷✵✵✶ ✷✵✵✷ ✷✵✵✸ ✷✵✵✹ ◆❡t ❲♦rt❤ ✩✸ ❚r✐❧❧✐♦♥ ✩✹✳✺ ❚r✐❧❧✐♦♥ ✩✻ ❚r✐❧❧✐♦♥ ✩✼✳✺ ❚r✐❧❧✐♦♥ ✩✾ ❚r✐❧❧✐♦♥ ✩✶✵✳✺ ❚r✐❧❧✐♦♥ ❚❛❜❧❡ ✶✳✽ ❛✳ ❜✳ ❝✳ ❞✳ ❍♦✇ ♠✉❝❤ ✐s ❛ tr✐❧❧✐♦♥✱ ❛♥②✇❛②❄ ●r❛♣❤ t❤✐s r❡❧❛t✐♦♥✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❣r❛♣❤❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❝❛♥ ▼r✳ ▼❝❉✉❝❦ ❡❛r♥ ✐♥ ✷✵ ②❡❛rs ❛t t❤✐s r❛t❡❄ ❊①❡r❝✐s❡ ✶✳✻✸ ▼❛❦❡ ✉♣ ❛♥❞ s♦❧✈❡ ②♦✉r ♦✇♥ ✇♦r❞ ♣r♦❜❧❡♠ ✉s✐♥❣ s❧♦♣❡✳ ✸✶ ✶✳✶✹ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ✶✹ ❊①❡r❝✐s❡ ✶✳✻✹ ❨♦✉ ❛r❡ t❤❡ ❢♦r❡♠❛♥ ❛t t❤❡ ❙❡s❛♠❡ ❙tr❡❡t ◆✉♠❜❡r ❋❛❝t♦r②✳ ❆ ❤✉❣❡ ❝♦♥✈❡②♦r ❜❡❧t r♦❧❧s ❛❧♦♥❣✱ ❝♦✈❡r❡❞ ✇✐t❤ ❜✐❣ ♣❧❛st✐❝ ♥✉♠❜❡rs ❢♦r ♦✉r ❝✉st♦♠❡rs✳ ❨♦✉r t✇♦ ❜❡st ❡♠♣❧♦②❡❡s ❛r❡ ❑❛t✐❡ ❛♥❞ ◆✐❝♦❧❛s✳ ❇♦t❤ ♦❢ t❤❡♠ st❛♥❞ ❛t t❤❡✐r st❛t✐♦♥s ❜② t❤❡ ❝♦♥✈❡②♦r ❜❡❧t✳ ◆✐❝♦❧❛s✬s ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉r st❛t✐♦♥✱ ❛❞❞ ✷ ❛♥❞ t❤❡♥ ♠✉❧t✐♣❧② ❜② ✺✱ ❛♥❞ s❡♥❞ ♦✉t t❤❡ r❡s✉❧t✐♥❣ ♥✉♠❜❡r✳ ❑❛t✐❡ ✐s s✉❜tr❛❝t ✶✵✱ ❛♥❞ s❡♥❞ t❤❡ r❡s✉❧t ♥❡①t ♦♥ t❤❡ ❧✐♥❡✳ ❍❡r ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉✱ ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❙❡s❛♠❡ ❙tr❡❡t✳ ❛✳ ❋✐❧❧ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡✳ ❚❤✐s ♥✉♠❜❡r ❝♦♠❡s ❞♦✇♥ t❤❡ ❧✐♥❡ ✲✺ ✲✸ ✲✶ ✷ ✹ ✻ ✶✵ x 2x ◆✐❝♦❧❛s ❝♦♠❡s ✉♣ ✇✐t❤ t❤✐s ♥✉♠✲ ❜❡r✱ ❛♥❞ s❡♥❞s ✐t ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❑❛t✐❡ ❑❛t✐❡ t❤❡♥ s♣✐ts ♦✉t t❤✐s ♥✉♠❜❡r ❚❛❜❧❡ ✶✳✾ ❜✳ ■♥ ❛ ♠❛ss✐✈❡ ❞♦✇♥s✐③✐♥❣ ❡✛♦rt✱ ②♦✉ ❛r❡ ❣♦✐♥❣ t♦ ✜r❡ ◆✐❝♦❧❛s✳ ❑❛t✐❡ ✐s ❣♦✐♥❣ t♦ t❛❦❡ ♦✈❡r ❜♦t❤ ❢✉♥❝t✐♦♥s ✭◆✐❝♦❧❛s✬s ❛♥❞ ❤❡r ♦✇♥✮✳ ❙♦ ②♦✉ ✇❛♥t t♦ ❣✐✈❡ ❑❛t✐❡ ❛ ♥✉♠❜❡r✱ ❛♥❞ s❤❡ ✜rst ❞♦❡s ◆✐❝♦❧❛s✬s ❢✉♥❝t✐♦♥✱ ❛♥❞ t❤❡♥ ❤❡r ♦✇♥✳ ❇✉t ♥♦✇ ❑❛t✐❡ ✐s ♦✈❡r✇♦r❦❡❞✱ s♦ s❤❡ ❝♦♠❡s ✉♣ ✇✐t❤ ❛ s❤♦rt❝✉t✿ ♦♥❡ ❢✉♥❝t✐♦♥ s❤❡ ❝❛♥ ❞♦✱ t❤❛t ❝♦✈❡rs ❜♦t❤ ◆✐❝♦❧❛s✬s ❥♦❜ ❛♥❞ ❤❡r ♦✇♥✳ ❲❤❛t ❞♦❡s ❑❛t✐❡ ❞♦ t♦ ❡❛❝❤ ♥✉♠❜❡r ②♦✉ ❣✐✈❡ ❤❡r❄ ✭❆♥s✇❡r ✐♥ ✇♦r❞s✳✮ ❊①❡r❝✐s❡ ✶✳✻✺ ❚❛②❧♦r ✐s ❞r✐✈✐♥❣ ❛ ♠♦t♦r❝②❝❧❡ ❛❝r♦ss t❤❡ ❝♦✉♥tr②✳ ❊❛❝❤ ❞❛② ❤❡ ❝♦✈❡rs ✺✵✵ ♠✐❧❡s✳ ❆ ♣♦❧✐❝❡♠❛♥ st❛rt❡❞ t❤❡ s❛♠❡ ♣❧❛❝❡ ❚❛②❧♦r ❞✐❞✱ ✇❛✐t❡❞ ❛ ✇❤✐❧❡✱ ❛♥❞ t❤❡♥ t♦♦❦ ♦✛✱ ❤♦♣✐♥❣ t♦ ❝❛t❝❤ s♦♠❡ ✐❧❧❡❣❛❧ ❛❝t✐✈✐t②✳ ❚❤❡ ♣♦❧✐❝❡♠❛♥ st♦♣s ❡❛❝❤ ❞❛② ❡①❛❝t❧② ✜✈❡ ♠✐❧❡s ❜❡❤✐♥❞ ❚❛②❧♦r✳ ▲❡t d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡② ❤❛✈❡ ❜❡❡♥ ❞r✐✈✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ d = 1✳✮ ▲❡t T ❜❡ p ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s ❞r✐✈❡♥✳ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s ❞r✐✈❡♥✳ ▲❡t ❛✳ ❆❢t❡r t❤r❡❡ ❞❛②s✱ ❤♦✇ ❢❛r ❤❛s ❚❛②❧♦r ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❍♦✇ ❢❛r ❤❛s t❤❡ ♣♦❧✐❝❡♠❛♥ ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ T (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ p (T ) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡ t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ❞✐st❛♥❝❡ t❤❛t ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ p (T (d)) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡✲ ♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❊①❡r❝✐s❡ ✶✳✻✻ ❘❛s❤♠✐ ✐s ❛ ❤♦♥♦r st✉❞❡♥t ❜② ❞❛②❀ ❜✉t ❜② ♥✐❣❤t✱ s❤❡ ✇♦r❦s ❛s ❛ ❤✐t ♠❛♥ ❢♦r t❤❡ ♠♦❜✳ ❊❛❝❤ ♠♦♥t❤ s❤❡ ❣❡ts ♣❛✐❞ ✩✶✵✵✵ ❜❛s❡✱ ♣❧✉s ❛♥ ❡①tr❛ ✩✶✵✵ ❢♦r ❡❛❝❤ ♣❡rs♦♥ s❤❡ ❦✐❧❧s✳ ❖❢ ❝♦✉rs❡✱ s❤❡ ❣❡ts ♣❛✐❞ ✐♥ ❝❛s❤✖❛❧❧ ✩✷✵ ❜✐❧❧s✳ ▲❡t k ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ ❘❛s❤♠✐ ❦✐❧❧s ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✳ ▲❡t ♠ ❜❡ t❤❡ ❛♠♦✉♥t ♦❢ ♠♦♥❡② s❤❡ ✐s ♣❛✐❞ t❤❛t ♠♦♥t❤✱ ✐♥ ❞♦❧❧❛rs✳ ▲❡t ✶✹ ❚❤✐s b ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✩✷✵ ❜✐❧❧s s❤❡ ❣❡ts✳ ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✾✴✶✳✶✴❃✳ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✷ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ m (k) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❘❛s❤♠✐ ♠❛❦❡s✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ b (m) t❤❛t t❡❧❧s ❤♦✇ ♠❛♥② ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞♦❧❧❛rs s❤❡ ♠❛❦❡s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ b (m (k))❜ t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❞✳ ■❢ ❘❛s❤♠✐ ❦✐❧❧s ✺ ♠❡♥ ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ✩✷✵ ❜✐❧❧s ❞♦❡s s❤❡ ❡❛r♥❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❡✳ ■❢ ❘❛s❤♠✐ ❡❛r♥s ✶✵✵ ✩✷✵ ❜✐❧❧s ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ♠❡♥ ❞✐❞ s❤❡ ❦✐❧❧❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✻✼ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ❡①❡r❝✐s❡s ★✷ ❛♥❞ ★✸✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❚❤✐s ✐s ❥✉st ❧✐❦❡ t❤❡ ♣r♦❜❧❡♠s ✇❡ ❞✐❞ ❧❛st ✇❡❡❦✱ ❡①❝❡♣t t❤❛t ②♦✉ ❤❛✈❡ t♦ ✉s❡ t❤r❡❡ ✈❛r✐❛❜❧❡s✱ r❡❧❛t❡❞ ❜② ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✶✳✻✽ f (x) = √ x+2 ✳ g (x) = x2 + x ✳ ❛✳ f (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ g (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ f (g (x)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ f (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ g (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❢✳ g (g (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❣✳ f (g (3)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✻✾ h (x) = x − 5✳ h (i (x)) = x✳ ❈❛♥ ②♦✉ ✜♥❞ ✇❤❛t ❢✉♥❝t✐♦♥ i (x) ✐s✱ t♦ ♠❛❦❡ t❤✐s ❤❛♣♣❡♥❄ ✶✺ ✶✳✶✺ ❍♦♠❡✇♦r❦✿ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ❊①❡r❝✐s❡ ✶✳✼✵ ❆♥ ✐♥❝❤✇♦r♠ ✭❡①❛❝t❧② ♦♥❡ ✐♥❝❤ ❧♦♥❣✱ ♦❢ ❝♦✉rs❡✮ ✐s ❝r❛✇❧✐♥❣ ✉♣ ❛ ②❛r❞st✐❝❦ ✭❣✉❡ss ❤♦✇ ❧♦♥❣ t❤❛t ✐s❄✮✳ ❆❢t❡r t❤❡ ✜rst ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✭❧❡t✬s ❥✉st ❛ss✉♠❡ t❤❛t✬s ❛t t❤❡ ❢r♦♥t✮ ✐s ❛t t❤❡ ✸✧ ♠❛r❦✳ ❆❢t❡r t❤❡ s❡❝♦♥❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✻✧ ♠❛r❦✳ ❆❢t❡r t❤❡ t❤✐r❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✾✧ ♠❛r❦✳ ▲❡t h d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ ❝r❛✇❧✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s ❣♦♥❡✳ ▲❡t t d = 1✳✮ ▲❡t ❜❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ✇♦r♠✬s t❛✐❧✳ ❛✳ ❆❢t❡r ✶✵ ❞❛②s✱ ✇❤❡r❡ ✐s t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ■ts t❛✐❧❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ h (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t (h) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ❤❡❛❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ t (h (d)) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ✶✺ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✼✴✶✳✶✴❃✳ ✸✸ ❊①❡r❝✐s❡ ✶✳✼✶ ➣ ❚❤❡ ♣r✐❝❡ ♦❢ ❣❛s st❛rt❡❞ ♦✉t ❛t ✶✵✵ ✴❣❛❧❧♦♥ ♦♥ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤✳ ❊✈❡r② ❞❛② s✐♥❝❡ t❤❡♥✱ ✐t ❤❛s ➣ ❣♦♥❡ ✉♣ ✷ ✴❣❛❧❧♦♥✳ ▼② ❝❛r t❛❦❡s ✶✵ ❣❛❧❧♦♥s ♦❢ ❣❛s✳ ✭❆s ②♦✉ ♠✐❣❤t ❤❛✈❡ ❣✉❡ss❡❞✱ t❤❡s❡ ♥✉♠❜❡rs ❛r❡ ❛❧❧ ✜❝t✐♦♥❛❧✳✮ ▲❡t d ❡q✉❛❧ t❤❡ ❞❛t❡ ✭s♦ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤ ✐s ✶✱ ❛♥❞ s♦ ♦♥✮✳ ▲❡t ♦❢ ❣❛s✱ ✐♥ ❝❡♥ts✳ ▲❡t c g ❡q✉❛❧ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ❡q✉❛❧ t❤❡ t♦t❛❧ ♣r✐❝❡ r❡q✉✐r❡❞ t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ✐♥ ❝❡♥ts✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ g (d) t❤❛t ❣✐✈❡s t❤❡ ♣r✐❝❡ ♦❢ ❣❛s ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ c (g) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ✐t t❛❦❡s t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ♦❢ ❣❛s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ c (g (d)) t❤❛t ❣✐✈❡s t❤❡ ❝♦st ♦❢ ✜❧❧✐♥❣ ✉♣ ♠② ❝❛r ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❞✳ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦❡s ✐t t❛❦❡ t♦ ✜❧❧ ✉♣ ♠② ❝❛r ♦♥ t❤❡ ✶✶t❤ ♦❢ t❤❡ ♠♦♥t❤❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ➣ ❡✳ ❖♥ ✇❤❛t ❞❛② ❞♦❡s ✐t ❝♦st ✶✱✵✹✵ ✭♦t❤❡r✇✐s❡ ❦♥♦✇♥ ❛s ✩✶✵✳✹✵✮ t♦ ✜❧❧ ✉♣ ♠② ❝❛r❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✼✷ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ♥✉♠❜❡rs ✶ ❛♥❞ ✷✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ✭❝♦♠♣♦s✐t❡✮ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❊①❡r❝✐s❡ ✶✳✼✸ f (x) = x x2 +3x+4 ✳ ❋✐♥❞ f (g (x)) ✐❢.

P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✵ ❜❛rs ✢♦❛t t❤r♦✉❣❤ t❤❡ ❛✐r ❛♥❞ ❧❛♥❞ ♦♥ t❤❡ t❡❛❝❤❡r✬s ❞❡s❦✳ ❆♥❞✱ ❛s q✉✐❝❦❧② ❛s s❤❡ ❛♣♣❡❛r❡❞✱ ❙❛❧❧② ✐s ❣♦♥❡ t♦ ❞♦ ♠♦r❡ ❣♦♦❞ ✐♥ t❤❡ ✇♦r❧❞✳ ▲❡t s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ss✱ ❛♥❞ c r❡♣r❡s❡♥t t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ❝❛♥❞② ❜❛rs ❞✐str✐❜✉t❡❞✳ ❚✇♦ ❢♦r ❡❛❝❤ st✉❞❡♥t✱ ❛♥❞ ✜✈❡ ❢♦r t❤❡ t❡❛❝❤❡r✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t♦ s❤♦✇ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ❙❛❧❧② ❣❛✈❡ ♦✉t✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts✳ c (s) =❴❴❴❴❴❴ ❜✳ ❯s❡ t❤❛t ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ t❤❡r❡ ✇❡r❡ ✷✵ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ssr♦♦♠✱ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ✇❡r❡ ❞✐str✐❜✉t❡❞❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❝✳ ◆♦✇ ✉s❡ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ ❙❛❧❧② ❞✐str✐❜✉t❡❞ ✸✺ ❝❛♥❞② ❜❛rs✱ ❤♦✇ ♠❛♥② st✉❞❡♥ts ✇❡r❡ ✐♥ t❤❡ ❝❧❛ss❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✵ ❚❤❡ ❢✉♥❝t✐♦♥ f (x) = ✐s ✏❙✉❜tr❛❝t t❤r❡❡✱ t❤❡♥ t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ f (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✶ ❚❤❡ ❢✉♥❝t✐♦♥ y (x) ✐s ✏●✐✈❡♥ ❛♥② ♥✉♠❜❡r✱ r❡t✉r♥ ✻✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ y (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✷ z (x) = x2 − 6x + 9 ❛✳ z (−1) =❴❴❴❴❴❴ ❜✳ z (0) = ❴❴❴❴❴❴ ❝✳ z (1) =❴❴❴❴❴❴ ❞✳ z (3) =❴❴❴❴❴❴ ❡✳ z (x + 2) =❴❴❴❴❴❴ ❢✳ z (z (x)) =❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✸ ❖❢ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡ts ♦❢ ♥✉♠❜❡rs✱ ✐♥❞✐❝❛t❡ ✇❤✐❝❤ ♦♥❡s ❝♦✉❧❞ ♣♦ss✐❜❧② ❤❛✈❡ ❜❡❡♥ ❣❡♥❡r❛t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❆❧❧ ■ ♥❡❡❞ ✐s ❛ ✏❨❡s✑ ♦r ✏◆♦✑✖②♦✉ ❞♦♥✬t ❤❛✈❡ t♦ t❡❧❧ ♠❡ t❤❡ ❢✉♥❝t✐♦♥✦ ✭❇✉t ❣♦ ❛❤❡❛❞ ❛♥❞ ❞♦✱ ✐❢ ②♦✉ ✇❛♥t t♦.

Download PDF sample

Advanced Algebra II: Activities and Homework by KennyFelder


by Kevin
4.3

Rated 4.22 of 5 – based on 33 votes